Proteome profiling of flax (*Linum usitatissimum*) seed: Characterization of functional metabolic pathways operating during seed development

Viththal T. Barvkar, Varsha C. Pardeshi, Sandip M. Kale, Narendra Y. Kadoo, Ashok P. Giri, Vidya S. Gupta*

Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.

*Corresponding author

Dr. Vidya Gupta,

Chief Scientist and Chair,

Biochemical Sciences Division,

CSIR-National Chemical Laboratory,

Pune 411008, India

E-mail address: vs.gupta@ncl.res.in

Tel: +91-20-25902237

Fax: +91-20-25902648
Abstract

Flax (*Linum usitatissimum* L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30 and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 was carried out to understand their role during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase, were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped on to developmental seed specific EST libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

Keywords

Flax seed development, carbon flux, MSE, digital expression analysis, α-linolenic acid, secoisolariciresinol diglucoside
Introduction

Flax (*Linum usitatissimum* L.) seeds have been used as human food and animal feed since ancient times. It has also been cultivated for many industrial uses such as in the production of linen, oil paints, stains and oleochemicals. The importance of flax seeds lies in their relatively high contents of fat (30-40%), protein (20-30%), dietary fiber (20%) and ash (4%) \(^1\). More recently, interest has increased for incorporation of the flax seeds in a number of health food products due to the presence of bioactive ingredients such as α-linolenic acid (ALA), lignans like secoisolariciresinol diglucoside (SDG) and mucilage (fiber) for human health \(^2\). Moreover, the flax seed proteins contain desirable amino acids profile similar to that of soybean, which is a well-regarded protein source \(^3\). However, flax seeds also contain some compounds that are considered undesirable or might have some anti-nutritional effects such as cyanogenic glycosides, linatine, anti-pyridoxine factor, trypsin inhibitors, phytic acid, allergens and goitrogens \(^4\). Due to all these attributes, flax appears to be an important model to understand seed development.

Biochemical and genetic studies of flax seeds have been carried out to identify, characterize and understand accumulation of the fatty acids; mainly cyanogenic compounds \(^5\), \(^6\), ALA \(^7\), lignan \(^8\), \(^9\) and seed storage proteins \(^10\). Recently, extensive transcriptomic analyses of developing seeds have been performed to describe biosynthetic pathways leading to the accumulation of these storage compounds in flax seed \(^11\), \(^12\). These studies catalogued temporal and spatial changes in gene expression specific to metabolic pathways related to the accumulation of oil, protein and carbohydrate (mucilage) reserves during seed development.

Despite this, little is known about the translational and post-translational regulation of proteins during seed development. For example, although biosynthetic pathway of fatty acid production in linseed is known, the biological mechanisms controlling linolenic acid level remains unknown \(^13\). As flax seeds accumulate diverse seed storage compounds of nutritional and economical importance, understanding the seed development process is vital.

Seed development is a highly complex process and many genes involved in various pathways are under precise regulation for proper development. Therefore, it is necessary to apply systematic and parallel approaches on a global scale to elucidate the relationships among various metabolic networks operating during seed development. Recent advances in various high-throughput technologies provide a unique opportunity to analyze biological systems on a genome-wide scale. The relationship between protein and oil composition in seed was revealed by the proteomics approach \(^14\). The proteomes of oilseeds, such as soybean \(^15\), \(^16\),
rapeseed, Castor and Arabidopsis were investigated to gain insights into the metabolic pathways operating during the respective seed development. Hradilova et al. investigated the effect of cadmium exposure on proteome changes of contrasting flax cultivars. Klubicova et al. developed a quantitative reference map of mature and developing flax seed proteins harvested from the remediated Chernobyl area respectively. They identified a total of 102 proteins in developing flax seed and a large number of proteins could not be assigned any known function. This could be due to the limited genomic resources for flax available at that time. Recently, a revised version of the draft genome sequence of flax has been published (http://www.linum.ca and http://www.phytozome.net/flax), which is expected to increase the protein identification efficiency.

The goal of the present study was to develop a comprehensive proteomics based dataset for flax to better understand its seed development. Among the various protein prefractionation approaches reported, 1D-SDS-PAGE followed by LC-MS approach was used to analyze seven seed development stages. This identified a total of 1716 proteins, which were classified into 15 functional groups. This information was used to understand the carbon assimilatory, storage proteins and cyanogenic glycoside biosynthetic pathways in flax seed.

Further, the proteomics data were compared with the transcript data to understand the regulation of the genes involved in particular pathways. For validation of proteomics results, reverse transcription quantitative PCR (RT-qPCR) of important 19 genes was performed and it revealed that their expression patterns are consistent with the proteins identified at that particular stages. By comparison of the results obtained in this study with those from other model plants, the biological mechanisms involved in seed development that are either common or unique to different plants can be identified.

Materials and methods

Plant material

The flax variety NL-97 was grown at College of Agriculture, Nagpur (2010-2011, November-March). Flax flowers were tagged after opening (between 7.30 and 8.30 AM IST), and developing bolls were collected at 4, 8, 12, 16, 22, 30 and 48 days after anthesis (DAA). Developing seeds were harvested from bolls at 4 °C to prevent dehydration and stored at -80 °C until further use. To determine seed fresh weight and dry weight, three pools of 10 randomly selected seeds were weighed just after harvest and after drying at 50 °C for 24 h in hot air oven. The seed length, thickness and width were measured using a scale.
Fatty acid analysis of developing seeds

Fatty acid methyl esters (FAMES) were extracted from seven seed developmental stages as described by Rajwade et al. 25 with some modifications. 1 µL of chloroform reconstituted extracts were injected in AutoSystem XL GC (Perkin Elmer, USA) with SP-2330 Supelco capillary column, 30 m long and 0.32 mm diameter. Fatty acid (FA) peaks were identified by comparing them with the standard FA profiles (Sigma–Aldrich, USA). The area under the peak was expressed as percentage fatty acid content. FA profiling for each stage was repeated three times. Mean of three replicates was averaged to get the percent FA content of each developmental stage.

Protein extraction, 1D-SDS-PAGE and in-gel digestion

Total proteins from each seed developmental stage were extracted according to Wang et al. 26. Three independent protein extractions were performed with the tissue. Total protein content was measured at each stage using a dye-binding protein assay 27. Protein samples (80 µg each) were loaded on 12% SDS polyacrylamide constant separation gel with a 4% stacking gel and electrophoresed at 20 °C using a vertical PROTEAN II xicell (BioRad, USA) at constant current of 50 Amp/gel. The gels were visualized with coomassie brilliant blue staining (CBB) and scanned at 300 dpi using high resolution image scanner (Biorad GS 800, USA). Each lane (representing a seed developmental stage) of the gel was sliced with a scalpel into 13 pieces based on protein abundance as outlined in Figure 1. Each slice was transferred into a 1.5mL tube and in-gel digestion using trypsin was performed as described by Haynes et al. 28 with slight modifications. In brief, protein bands were excised from the CBB-stained gels, washed twice with milli-Q water, destained with a 1:1 (v/v) solution of 50% acetonitrile and 50mM NH₄HCO₃ and then dehydrated in 100% acetonitrile (ACN) until the gel pieces were shrunken. The dried gel pieces were reduced with 10mM dithiothreitol for 45 min at 56 °C and alkylated with 55mM iodoacetamide in dark at RT for 40 min. Gel pieces were dehydrated and then digested with trypsin (Sigma, USA) at 37 °C overnight. The resulting peptides were extracted using sonicator (Branson, USA) twice by adding 200µL of a solution containing 0.1% formic acid and 5% acetonitrile for 15 min, respectively. The peptides were dried in a SpeedVac (Labconco, USA) and then reconstituted in 10µL of 5% aqueous ACN containing 0.1% formic acid for subsequent analysis.
Liquid chromatography mass spectrometry analysis

All the samples were analyzed by LC-MSE using a NanoAcquity ultra performance liquid chromatography (UPLC) system (Waters, USA) coupled to a SYNAPT High Definition Mass Spectrometer (Waters, USA). The nano-LC separation was performed using a bridged-ethyl hybrid (BEH) C18 reversed phase column (1.7 µm particle size) with an internal diameter of 75 µm length of 150 mm (Waters, USA). The binary solvent system that was used, comprised 99.9% water and 0.1% formic acid (mobile phase A) and 99.9% acetonitrile and 0.1% formic acid (mobile phase B). The samples were initially pre-concentrated and desalted online at a flow rate of 5 µL/min using a Symmetry C18 trapping column (internal diameter 180 µm, length 20 mm) (Waters, USA) with a 0.1% B mobile phase. Each sample (total digested protein) was applied to the trapping column and flushed with 0.1% solvent B for 3 min at a flow rate of 15µL/min. After each injection, peptides were eluted into the NanoLockSpray ion source at a flow rate of 300 nL/min using a gradient of 2-40% B over 50 min. The lockmass calibrant peptide standard, 600fmol/µL Glu-fibrinopeptide B (Sigma-Aldrich, USA), was infused into the NanoLockSpray ion source at a flow rate of 300nL/min and was sampled during the acquisition at 30s intervals. The mass spectrometer was operated in V-mode at a resolution of at least 9000 full width at half height (fwhh). For LC-MSE, full scan (m/z 50-2000) data were collected using the “expression” mode of acquisition, which acquires alternating 1s scans of normal and elevated collision energy. Data were collected at a constant collision energy setting of low (4V) and high (ramp from 20 to 40 V) energy mode MSE scans.

Data processing and database searching

The continuum LC-MSE data were processed and searched using ProteinLynx Global Server 2.4 (PLGS; Waters, USA) software. Protein identifications were obtained by searching the 47,912 predicted gene models from flax whole genome sequence (November, 2011; \url{http://www.linum.ca}). LC-MSE data were searched with a fixed carbamidomethyl modification for cysteine residues, along with a variable modification for oxidation of methionine, N-terminal acetylation, deamidation of asparagine and glutamine and phosphorylation of serine, threonine and tyrosine. The ion accounting search algorithm within PLGS was developed specifically for searching data-independent MSE data sets, and a detailed description of the algorithm was reported by Li et al. The ion accounting search parameters were; precursor and product ion tolerance: automatic setting, minimum number of product ion matches per peptide: 3, minimum number of product ion matches per protein: 7,
minimum number of peptide matches per protein: 2, and missed tryptic cleavage sites: 2. The false positive rate was 4%. Search results of the proteins and the individual MS/MS spectra with confidence level at or above >95% were accepted.

Functional classification

Gene Ontology (GO) annotation was performed with Blast2GO\(^{30}\) based on sequence similarity. For annotation, the default configuration settings were used and the proteins were searched against the NCBI-nr protein database (December, 2011). Plant related GO terms were then retrieved using the GO slim viewer from the AgBase web server (http://www.agbase.msstate.edu). Proteins with unknown function or without specific homology or similarity descriptions were BlastP searched against the NCBI-nr database to confirm their function. Sub-cellular localizations of proteins were predicted using WoLF PSORT web server\(^{31}\) (http://www.wolfpsort.org/). The information about subcellular localization was incorporated into protein description. The identified proteins were also classified into 15 functional classes according to Hajduch et al.\(^{17}\)

Digital expression analysis

Developing flax seed specific ESTs were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/nucest/?term=linum%20usitatissimum) [eight libraries; Globular embryo (GE), heart shaped embryo (HE), torpedo embryo (TE), cotyledon embryo (CE), mature embryo (ME), globular stage seed coat (GC) and torpedo stage seed coat (TC) and pooled endosperm (EN), total 2,20,724 EST sequences; Jan, 2012)]. Makeblastdb (ftp://ftp.ncbi.nlm.nih.gov/blast/) was used to create developing flax seed EST database on an in-house server. Viroblast (v. 2.2+)\(^{32}\) was configured to use the stand-alone suite of Blast programs (v. 2.2.24+). The identified proteins were TBlastN searched against the EST database with an E-value threshold of ≤e\(^{-10}\) and ≥95% sequence identity criteria to map the ESTs onto gene models to obtain transcriptional evidence for individual proteins.

Reverse transcription quantitative real time PCR

RNA was extracted from seven seed developmental stages using Spectrum\(^{TM}\) Plant Total RNA Kit (Sigma-Aldrich, USA). DNasel treated total RNA was reverse transcribed using oligo(dT) primer and MultiScribe\(^{TM}\) reverse transcriptase (Applied Biosystems, USA). Gene specific primers for 19 genes were designed using Primer 3 (listed in Table S1). PCR conditions were optimized for annealing temperature and primer concentration. Real-time PCR was carried out in 7900HT Fast real-time PCR system (Applied Biosystems, USA)
using FastStart universal SYBR green master mix (Roche USA). Real time PCR amplification reactions were performed as described by Barvkar et al. For each of the three biological replicates, two independent technical replications were performed and averaged for further calculations. PCR conditions were optimized such that PCR efficiencies of housekeeping gene and gene of interest will be closer to two. PCR efficiencies were calculated using LinRegPCR. Relative transcript abundance calculations were performed using comparative $C_T (\Delta C_T)$ method as described by Schmittgen and Livak.

Results and Discussion

The present study of flax seed proteome describes a detailed analysis of proteins identified in developing flax seeds and characterizes the metabolic pathways operating during seed development. The major economic value of flax lies in its contents of oil and secondary metabolites and a thorough knowledge of the regulation of their accumulation during seed development could be exploited for different applications.

Biochemical characterization of developing flax seed

The biochemical characterization of developing flax seed was performed to define the various seed developmental events. Whole flax seeds were analyzed at 4, 8, 12, 16, 22, 30 and 48 days after anthesis (DAA). This time interval covered the major seed developmental events such as embryogenesis, seed filling and maturation. Seed size and color changed during the course of seed development (Figure 1A). The fresh seed weight increased till 22 DAA and declined later, indicating that the seeds entered the pre-desiccation phase; whereas, dry seed weight started increasing after 12 DAA (Figure 1B) and continued to increase till maturity. This observation was also supported by shrinkage of seeds at the maturation phase indicated by the decrease in size (Figure 1C). We observed that during embryogenesis (from 4 to 16 DAA), water content of the seed remained high (~90%); whereas, the protein content increased during seed filling, which coincided with increased fresh as well as dry weight of the seed revealing high metabolic activity in flax seeds during the 4 to 16 DAA (Figure 1D).

At the early developmental stages (4-8 DAA), palmitic acid (PA; C16:0), linoleic acid (LA; C18:2), and ALA (C18:3) were the most abundant FAs. The PA content was high (30.74%) at 4 DAF stage further gradually decreased throughout seed development till maturity. The proportion of stearic acid (SA; C18:0) remained nearly constant. The oleic acid (OA; C18:1) content showed steady increase from 4 (6.19%) to 12 DAF (28%) and further maintained similar levels. The accumulation pattern of LA and ALA showed a correlation between product and precursor ratio. LA content was high (34.28%) at the 4 DAA stage.
which gradually declined from 12 to 48 DAA. The ALA content was low at the 4 DAA (22.66 %) and from 12 DAA onwards showed a steady increase till maturity. At maturity the total ALA accumulation was 46% where as LA content was 11.84% of the total fatty acids quantified (Figure 1E). Thus, biochemical analysis of flax seed indicates that the period from 4-16 DAA constitutes the embryogenesis phase while period from 17-30DAA and 31 onwards represents seed filling and maturation phases respectively.

1D-SDS-PAGE and LC-MSE efficiently cover the flax seed proteome

The developing seed proteome is a complex mixture and seed storage proteins constitute ~23% of total flax seed protein. However, this high abundance of storage proteins masks the identification of low abundant proteins and requires efficient pre-fractionation. To reduce and fractionate the protein complexity, we used 1D-SDS PAGE and the fractionated proteins were identified using the LC-MSE (Figure 1F-G). Total of 1716 non-redundant proteins were identified (for summary of identified proteins see Table S2). We found that 1D-SDS-PAGE gave good coverage of the flax proteome. Earlier studies also reported 1D-SDS-PAGE as the most effective method for maximum proteome coverage and to fractionate complex protein mixtures. Previously, such a combination of 1D-SDS-PAGE protein separation and LC-MS/MS analysis was employed to analyze the roles of chloroplast proteases (ClpPR) in plastid biogenesis and homeostasis, to understand the kiwi fruit ripening and in shotgun proteomic analysis of Arabidopsis leaves.

GO annotation, functional categorization and family relationship

To understand the biological functions of the expressed proteins, Gene Ontology (GO) annotation was performed. The identified 1716 proteins were analyzed using BlastP against the NCBI-nr plant database, which yielded 14,801 GO annotations. The Venn diagram (Figure S1) shows the distribution of GO annotation in the three categories.

According to GO annotation, the cellular component assignments were mostly to the cellular components (15%), cell, intracellular and cytoplasm (13% each), plastid (10%), membrane (8%) and cytosol (6%) (Figure 2A). As per the biological processes of the flax seed proteome, 18% proteins with metabolic processes, 17% with cellular processes, 15% with biological processes and 6% with biosynthetic processes were observed in the flax proteome (Figure 2B). Furthermore, the highly enriched molecular functions of the flax seeds were revealed as proteins with catalytic activity (25%) followed by binding proteins (18%) and hydrolase activity (13%), respectively (Figure 2C).
Most of the identified proteins (19%) were involved in primary metabolism, followed by protein destination and storage (14%) and energy (10%). Similar observation was reported in other oilseeds such as rapeseed17, soybean16 and castor18. More than half of the flax proteins showed high similarity to castor bean proteins, supporting the taxonomic grouping of flax and castor bean within the order Malpighiales. The flax transcriptomic data also showed similar results12. Such information will be helpful for molecular taxonomy of this order as the taxonomic relationship of families within this order is still poorly resolved.

Diversity of seed storage proteins in flax

A majority of the flax seed proteins are storage proteins and constitute \textasciitilde23\% of the whole flax seed10. Usually, seeds of many plant species accumulate two of the three (2S, 7S and 11S) types of storage proteins. Previous studies reported that flax seed contains an unusual diversity of storage proteins in the form of cupin, conlinin and cruciferin12. In the present study, we identified 2S albumin (conlinin) and 11S globulin (legumin, glutenin type A, cupin) proteins, confirming previous reports. In addition, we also detected 7S globulin (48kDa glycoprotein precursor) protein. This heterogeneity was consistent with the fact that seed reserve proteins are encoded by multi-gene families41. Expression of legumin B protein was much more abundant compared to other seed storage proteins analyzed (Figure 3A-D). These storage proteins accumulated in a specific temporal order with 7S and 11S (except cupin) accumulating during the maturation phase, while 2S is identified throughout the seed development. Transcripts encoding the abundant storage proteins were expressed in similar developmental stages,12 suggesting that the temporal accumulation of storage proteins is transcriptionally controlled.

Flax seed maturation marker proteins

Several proteins known to play important roles in seed maturation were also identified. Gutierrez et al.36 reported the expression of cysteine protease gene, which marks the embryo growth phase, at 10 days after flowering (DAF) in the Barbara ecotype of flax. Whereas, in NL-97, it was identified at 8 DAA indicating that the embryo was still in growth phase. The LEA proteins were identified during the desiccation phase of seed maturation42. In NL-97, the LEA protein was identified at 30-48 DAA, and also supported by the RT-qPCR expression indicating that this period represents the late maturation phase of flax seed (Figure 3E). Moreover, at 30 DAA, there was a sharp decrease in seed fresh weight indicating that the seed entered the desiccation phase or maturation phase at this time point.
In general, storage proteins are expressed abundantly during the cell expansion phase, after the embryo has been completely differentiated. Gutierrez et al. 36 reported that flax seed filling phase lasts from 20-30 DAF; however, in NL-97, the 16 DAA stage indicated the start of seed storage phase and a majority of the flax storage proteins were identified at this stage. Therefore, 16 to 30 DAA might represent the seed filling stage in NL-97. The transition between the embryogenesis and seed filling phases probably occurred at around 16 DAA, which marked a key change in several aspects of seed development; most importantly, the beginning of storage product accumulation.

Carbon entry and assimilation by glycolytic pathway

It has been suggested that carbon assimilation during seed development begins with the transport of photosynthetically assimilated carbon in the form of sucrose into seed and cleavage of sucrose plays a key role in inducing the seed maturation process. Sucrose synthase (SuSy) is the key enzyme implicated in the first step of sucrose metabolism. Four isoforms of SuSy identified mainly during embryogenesis and seed filling stages, suggesting the presence of two types of SuSy and active sugar metabolism during these stages. We analyzed the expression of one of the isoform; g4346 using RT-qPCR and transcript abundance was higher during embrogenesis with peak at 12DAA (Figure 3F). The hexose phosphates generated via the action of SuSy are metabolized through glycolysis or the oxidative pentose phosphate pathway (OPPP). Proteomic, biochemical and transcriptional studies suggest that glycolytic enzymes play a critical role in carbon metabolism during seed development 43-45. In our study of flax seed development, both cytosolic and plastidial isoforms of all the glycolytic enzymes were identified suggesting both were important for flax during seed development (Figure 4). The presence of such complete glycolytic pathway has been reported in rapeseed embryos, cauliflower buds, castor seed endosperm and non-photosynthetic plastids from pea 46-49.

For almost all the enzymes, we could detect both cytosolic and plastidial isoforms, except for the cytosolic phosphoglucomutase (PGM) and plastidial iPGAM isoforms. A possible explanation for this could be the lower expression of these proteins during seed development. Likewise, the plastidial iPGAM could not be detected even in rapeseed 17. A notable feature of our study was the detection of only plastidial isoforms of the PGM expressed especially during the embyrogenesis stages (Figure 3G). The plastidial PGM is reported to play an essential role in starch synthesis 50 as well as degradation of assimilatory starch 51. The starch
accumulated in young embryos of oilseeds provides carbon resources for lipid biosynthesis and thus, the plastidic PGM is a crucial factor affecting seed oil content. The studies in plants lacking the plastidial PGM indicate that it has a significant impact on the deposition of other storage products in seed. Therefore, in flax, plastidial PGM might have a crucial role to play in oil accumulation. In rapeseed, the seed specific expression of cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) increased glyceraldehyde 3-phosphate levels by three to fourfold in developing seeds, resulting in 40% increase in the oil content. Therefore we studied expression pattern of GAPDH. RT-qPCR of GAPDH revealed that it is expressed throughout seed development indicating GAPDH in flax might play a key role in seed development (Figure 3H).

Varied carbon flux pathways are functional during flax seed development

Oil synthesis studies in plant seeds propose two major routes of carbon flow for *de novo* fatty acid synthesis. In the first route, cytosolic glycolysis takes place till phosphoenolpyruvate (PEP) synthesis followed by its transport into plastid and conversion into acetyl-CoA, which is further used for FA synthesis. The functional existence of this route of carbon flux is supported by transcriptomics, stable isotopic labeling and proteomic analyses of developing seed from Arabidopsis and rapeseed, although a plastid pyruvate translocator is yet to be identified. In the present study, six of the seven isoforms of enolase identified were cytosolic in origin, indicating that PEP was transported across plastid as a carbon source for fatty acid production. Therefore, this route of carbon flux seems to be operating in flax seeds. In the second route of carbon flow, phosphoenolpyruvate carboxylase (PEPC) converts cytosolic PEP to oxaloacetic acid, followed by its malate dehydrogenase (MDH) mediated conversion to malate. The malate is imported in plastids and plastidial NADP malic enzyme decarboxylates it to pyruvate. Further, the pyruvate is converted to acetyl-CoA (by plastidial pyruvate dehydrogenase) for *de novo* fatty acid synthesis. Biochemical studies of developing seed and isolated leucoplasts from castor bean support this second route of carbon flux. In the present study, MDH and plastidial NADP malic enzyme decarboxylates were identified. The MDH was expressed throughout the seed developmental stages suggesting that this route might also be functional in flax seeds (Figure 3I). Collectively, these data indicate that both the routes of carbon flow might be functional in flax seeds. Further studies of these pathway enzymes might help in understanding the major routes of carbon flow for *de novo* fatty acid synthesis in flax seeds.
A third pathway of carbon assimilation is via Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) bypass to fulfill the high demand of carbon for fatty acid synthesis. In green photoheterotrophic plastids of rapeseed embryos, RuBisCO is able to fix CO₂ apart from the Calvin cycle. The identification of plastidial enolase and RuBisCO bypass enzymes (RuBisCO and phosphoribulo kinase) suggested that the 3-phosphoglycerate produced during the plastidial glycolysis needs to be converted to PEP using cytosolic enzymes and then transported back into plastids for fatty acid synthesis. The RuBisCO was expressed during embryogenesis stage and was one of the highly expressed enzymes among the selected 19 genes used for RT-qPCR analysis, indicating that this route is functional during early seed developmental stages (Figure 3J).

Lipid accumulation is associated with oleosin and lipoxygenase expression

Oil storage proteins such as oleosins (9 isoforms) and lipoxygenase (6 isoforms) were identified during seed maturation phase. Oleosins are structural proteins found in vascular plant oil bodies and help to stabilize oil bodies in seeds and account for about 2-8% of the total seed proteins. Nine isoforms of oleosin were detected during seed filling and mature stages. Expression pattern of Oleosin isoform g44859 matched the pattern of flax fatty acid desaturases that are involved in the formation of the omega-3 fatty acids, indicating their role in the accumulation of oil (Figure 3K).

Lipoxygenases (LOX) are widely distributed in plants and animals and are critically important for plant growth and development. They are also involved in mobilizing storage lipids during germination. Flax seed proteome as well as transcript analysis of isoform g14677 showed LOX proteins detected mainly during the maturation stage and therefore, most probably served as nutrient reservoir (Figure 3L). High expression of LOX was also observed in developing seeds of Medicago and soybean, thereby strengthening their role in oil accumulation in seeds.

High activity of β-oxidation and glyoxylate pathway might accumulate alpha-linolenic acid in flax seed

Fatty acids are widely found as major carbon and chemical energy reserves in seeds. Acetyl-CoA carboxylase (ACC), which catalyzes the conversion of acetyl-CoA into malonyl-CoA, is the key enzyme in FA biosynthesis. This plastid complex comprises four subunits, the biotin carboxylase, biotin carboxyl carrier protein and carboxyltransferase subunits (α and β). We identified all the enzyme subunits (except the β subunit of the carboxyltransferase, which was
Flax seed is enriched in ALA (18:3n-3) and fatty acid desaturases (SAD, FAD2 and FAD3) play important roles in synthesis of this fatty acid. The SAD (two isoforms), FAD2 and FAD3A proteins were detected at 22 DAA. Banik et al. detected peak in transcript activity of these enzymes during the similar seed developmental stages. These studies indicate that the expression of these proteins is transcriptionally controlled and these stages are important for ALA accumulation in flax seed.

Interestingly, we also identified enzymes involved in β-oxidation of the fatty acids during the embryogenesis and seed filling stages. β-oxidation occurs widely in plant tissues and also during seed development, implying a more general role during germination and seedling establishment than in lipid degradation. As a matter of fact, the 3-ketoacyl-CoA thiolase-2 (kat2) mutation in Arabidopsis resulted in loss of activity and decrease in lipids up to 30% in the seeds revealing the importance of β-oxidation during seed development. Such loss of lipids in embryos is also evident in other oilseed species such as castor bean, cotton, Arabidopsis and rapeseed. Hence, degradation of stored oil is likely to be a normal maturation process in flax seed development. Moreover, key enzymes involved in glyoxylate pathway, isocitrate lyase (ICL) and malate synthase (MS) were also identified at later stage of seed filling and maturation also supported by their transcript expression pattern (Figure 2M-N). Studies conducted in developing rapeseed proposed that enhanced activity of enzymes involved in β-oxidation and glyoxylate pathway leads to accumulation of specific fatty acids. This could be the possible reason for high accumulation of ALA in flax and the present study supports this observation.

Simultaneous biosynthesis and degradation of cyanogenic glycosides occurs in developing flax seed

Cyanogenic glycosides (CGs) are the biggest and extensively studied class of plant secondary metabolites found in more than 2,650 plant species and play important roles in primary metabolism especially in plant insect interactions. After intake by humans, cyanogenic glycosides are degraded in intestines by the intestinal microorganisms’ β-glycosidase enzymes, which produce thiocyanates; causing iodine-deficiency disorders such as goiter and cretinism. Flax seed contains a considerable amount of CGs such as linamarin, linustatin, lotaustralin and neolinustatin, which limits the use of flax seed meal as food. Therefore, it is essential to understand the accumulation pattern of such toxic CGs during flax seed development. CGs biosynthetic pathway can be unanimously divided in three steps, wherein
the first two steps are catalyzed by the enzymes of cytochrome-P450 family that produce cyanohydrins, which are glycosylated by UDP-glucosyltransferase.

In the present study, three isoforms of cytochrome-P450 or valine N-monoxygenase (g28397, g29398 and g29400) were detected during embryogenesis, which were homologues to CYP79D1 and CYP71E1, respectively. The CYP79D1 catalyzes the first two committed steps in the biosynthesis of linamarin in cassava, whereas the CYP71E7 exhibits broader substrate specificity and catalyzes the conversion of Z-p-hydroxyphenyl acetaldoxime into cyanohydrin, p-hydroxy-mandelonitrile. Niedzwiedz-Siegien and Frehner et al. reported that monoglucosides (linamarin and lotaustralin) and diglucosides (linustatin and neolinustatin) appeared in developing flax embryos soon after anthesis; however, mature seeds accumulated only diglucosides. In the present study, the enzymes responsible for the monoglucosides synthesis were identified during embryogenesis. Expression of valine N-monooxygenase at 4DAA confirms the earlier reports (Figure 3O).

CGs undergo catabolic processes eventually leading to hydrogen cyanide and the enzymes, β-glucosidases (linamarase) and R-hydroxynitrile lyases are involved in this degradation. Both these enzymes were detected at the late seed filling and maturation stages. The expression pattern of β-glucosidases showed similar pattern and confirms the proteomic findings (Figure 3P). Another catabolic enzyme, β-cyanoalanine synthase was also detected and expressed during the embryogenesis and seed filling stages of flax seed (Figure 3Q).

Flax seed development demands enhanced methionine metabolism

Methionine (Met) is one of the important amino acids and a fundamental metabolite synthesized by plants. The proteomic analyses of Arabidopsis seed germination and priming, developing Medicago and Chinese fir seeds suggested that Met metabolism has an important role in seed development and germination. In plants, Met can be synthesized through two pathways, *de novo* and S-methylmethionine (SMM) cycle. In the present study, two important enzymes involved in the *de novo* biosynthetic pathway of Met, cystathionine γ-synthase and methionine synthase were detected. The expression pattern of methionine synthase was consistent with the high demand for protein synthesis during embryogenesis (Figure 3R). Similarly, the enzyme involved in the Met recycling pathway, AdoMet:Met S-methyltransferase, was also detected. Additionally, two more enzymes, AdoMet synthetase and S-Adenosyl-L-homocysteine (AdoHcy) hydrolase, which constitute the SMM cycle and consume about half of the AdoMet produced were also identified. These enzymes help in the short term control of AdoMet level, which is the regulator of methionine biosynthesis.
Among them, the AdoMet synthetase is a key enzyme in plant metabolism catalyzing the biosynthesis of AdoMet, which is one of the key regulators of seed metabolism and has an important influence on cell growth and development. It is the primary methyl-group donor for methylation of varied compounds and involved in biosynthesis of ethylene, biotin and polyamine79. In the present study as well as in Medicago, a conspicuous decrease in the level of AdoMet synthetase was observed during seed development, indicating a switch from a period of highly active metabolism to a quiescence period (Figure 3S). On the contrary, during germination in Arabidopsis, AdoMet synthetase accumulated in the transition from a quiescent to a highly active state75.

AdoHcy hydrolase catalyzes the production of AdoHcy, which is a potent competitive inhibitor of methyltransferases crucial for cell growth and development80 and is an important intermediate in maintaining proper AdoMet levels. AdoHcy hydrolase was active during flax seed development, supporting the hypothesis that methionine recycling via the AdoMet/AdoHcy and the SMM cycle is limiting in mature seeds and is unable to maintain appropriate methionine pool for germination and seedling establishment, as also observed in Medicago81.

Besides the enzymes involved in the Met biosynthesis and SMM cycle, other enzymes involved in Met metabolism were also detected. Two isoforms of cysteine synthase, catalyzing the production of cysteine, which serves as the sulphur donor for Met from O-acetyl-serine and hydrogen sulphide, were detected. ACC oxidase, an enzyme involved in the synthesis of the plant ripening hormone, ethylene was also identified. During embryo development in rapeseed, this enzyme controls cotyledon expansion82. Based on the above results, we propose a functional model of methionine metabolism (Figure 5), which suggests that the metabolism of Met is critical for storage protein synthesis in flax.

Transcriptional evidences correlate with proteome profiling

To obtain preliminary transcriptional evidence, the frequency of the ESTs mapping per protein was determined using the publicly available flax EST datasets from the developing seeds. A total of 1397 proteins (81\%) had corresponding transcripts expressed in above-mentioned libraries. This approach confirms gene expression at transcript level and would be helpful for candidate gene isolation and characterization (Figure S2 and Table S3). However, when the whole EST database of flax was used for the analysis, all the proteins had transcriptional evidence (data not shown).
Conclusions

This study provides a global proteomics perspective of the complex metabolic processes occurring during flax seed development. The combined use of 1D-SDS-PAGE and LC-MSE technique for profiling the complex seed proteome was found to be very effective. Several proteins involved or associated with synthesis of the health promoting compounds were identified. Their temporal expression pattern revealed development stages important for their accumulation. We demonstrate the presence of three major carbon assimilatory routes for \textit{de novo} fatty acid synthesis in flax. In addition, the study also revealed unusual diversity of flax seed storage proteins. As reported in other oilseeds, methionine metabolism was enhanced during the transition from embryogenesis to seed filling, indicating a switch from active growth phase to quiescence phase. Moreover, about 81\% of the identified proteins had transcriptional evidence in the form of ESTs from developing seeds of flax. This confirms gene expression at transcript level and would be helpful for candidate gene isolation and characterization. More in-depth studies of the identified proteins will be useful for better understanding of the complexities of flax seed development.

Supporting Information

\textbf{Figure S1. Venn diagram:} Venn diagram of flax seed proteins annotated by one, a combination of two and all three GO vocabularies. (CC: cellular component, BP: biological process, MF: molecular function)

\textbf{Figure S2. Digital expression analysis of identified proteins using seed specific EST libraries:} Identified 1716 proteins were TBlastN queried against developmental seed specific EST database and EST clone frequencies were represented as heat map. The left and upper side of the heat map shows hierarchical clustering based on Pearson correlation matrix. Abbreviations used for libraries Globular (GE), heart shaped (HE), torpedo (TE), cotyledon (CE), mature (ME) embryo and globular (GC) and torpedo (TC) stage seed coat and pooled endosperm (EN).

\textbf{Table S1. Sequences of primers used for reverse transcription quantitative PCR.}

\textbf{Table S2. Summary of identified proteins}

Identified proteins were listed along with relative amount of protein in each of biological replicate. Functional classification, PLGS score and mass spectrometric data were also represented. Sub-cellular localization of proteins was predicted by WoLF PSORT web server and values indicate scores. Protein homologue was identified by using BlastP suite from NCBI.
Table S3. Digital expression analysis of identified proteins using seed specific EST libraries

A. Details of TBlastN parameters and NCBI accession numbers of mapped ESTs
B. Frequency of EST clones mapped onto the proteins

Acknowledgments

This project was supported by the Department of Biotechnology, Government of India at the National Chemical Laboratory, Pune, India (Project Code: GAP278426). VTB, and SMK acknowledge the Council of Scientific and Industrial Research (CSIR), India for research fellowships. VCP acknowledge the Department of Biotechnology, Government of India for research fellowships (Bio-CARe scheme). We thank Dr. P.B. Ghorpade College of Agriculture, Nagpur for providing field facilities for growing and collection of seed developmental tissue.

Competing interests

The authors declare that they have no competing interests.
References

60. Banik, M.; Duguid, S.; Cloutier, S., Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (*Linum*

Figure legends

Figure 1. Biochemical characterization and schematic representation of experimental design for proteome analysis of developing flax seeds: A) The image of flax seed developmental stages (7 stages, 4, 8, 12, 16, 22, 30 and 48 DAA) subjected to proteome analysis. B) Seed fresh and dry mass during the experimental period expressed as mass per seed. Values are the average of 10 determinations; SE is denoted as error bars. C) Individual seed size characteristics, including length (x), thickness (y), and width (z), were determined using scale. Each value is an average of 10 seeds; SE is denoted by error bars. D) Total protein content per seed during the seven seed developmental stages. Values are the average of 3 replicates; SE is denoted as error bars. E) Percent fatty acid content per seed analyzed during the seven seed developmental stages. Accumulation of five main fatty acids, namely palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1), linoleic (LA, C18:2), and linolenic (ALA, C18:3) acids is illustrated. Values are the average of 3 biological replicates; SE is shown as error bars F) Gel image of 1D-SDS-PAGE (12%), gel slicing (13 pieces), in-gel trypsin digestion followed by nano LC-ESI-MS E) G) The LC-MS/MS spectra were searched against the predicted flax gene models database (http://www.linum.ca) using ProteinLynx Global Server 2.4 (PLGS) with criteria as described in Materials and Methods. The identified non-redundant proteins were BlastP searched against the NCBI-nr database along with Blast2Go software to assign the functional role to the identified proteins. The identified proteins were TBLASTN searched against the seed specific EST libraries (see Material and Methods) to study the digital expression analysis.

Figure 2. GO analysis of proteins identified in developing flax seeds: A total of 1716 unique proteins were analyzed with the Blast2GO program. The GO categories: A) 25 cellular components (CC) B) 43 biological processes (BP) and C) 24 molecular functions (MF) are shown as pie charts.

Figure 3: RT-qPCR expression profile of 20 candidate genes

Seven seed developmental stages (4, 8, 12, 16, 22, 30, 48 DAA) were used in the study. These graphs show the relative transcript abundance of each gene in comparison with the reference gene, Linum usitatissimum ETIF5A (GR508912). Expression values are reported as the average of three biological and two technical replicates. Values correspond to the mean and standard error of biological triplicates.
Figure 4. Schematic view of carbohydrate metabolism during flax seed development:

Figure 5. Schematic view of methionine metabolic pathway during flax seed development:
Values in the parentheses represent the number of isoforms identified for that protein. Enzymes shown in grey color were not identified in the present study. Abbreviations for enzymes and metabolites: MMT: methionine S-methyltransferase; HMT: SMM: homocysteine S-methyltransferase; AMP: Adenosine monophosphate.
Figure 1. Biochemical characterization and schematic representation of experimental design for proteome analysis of developing flax seeds: A) The image of flax seed developmental stages (7 stages, 4, 8, 12, 16, 22, 30 and 48 DAA) subjected to proteome analysis. B) Seed fresh and dry mass during the experimental period expressed as mass per seed. Values are the average of 10 determinations; SE is denoted as error bars. C) Individual seed size characteristics, including length (x), thickness (y), and width (z), were determined using scale. Each value is an average of 10 seeds; SE is denoted by error bars. D) Total protein content per seed during the seven seed developmental stages. Values are the average of 3 replicates; SE is denoted as error bars. E) Percent fatty acid content per seed analyzed during the seven seed developmental stages. Accumulation of five main fatty acids, namely palmitic (PA, C16:0), stearic (SA, C18:0), oleic (OA, C18:1), linoleic (LA, C18:2), and linolenic (ALA, C18:3) acids is illustrated. Values are the average of 3 biological replicates; SE is shown as error bars. F) Gel image of 1D-SDS-PAGE, gel slicing (13 pieces), in-gel trypsin digestion followed by nano LC-ESI -MS/MS. G) The LC-MS/MS spectra were searched against the predicted flax gene models database (http://www.linum.ca) using ProteinLynx Global Server 2.4 (PLGS).
with criteria as described in Materials and Methods. The identified non-redundant proteins were BlastP
searched against the NCBI-nr database along with Blast2Go software to assign the functional role to the
identified proteins. The identified proteins were TBlastN searched against the seed specific EST libraries (see
Material and Methods) to study the digital expression analysis.

186x232mm (300 x 300 DPI)
Figure 2. GO analysis of proteins identified in developing flax seeds: A total of 1716 unique proteins were analyzed with the Blast2GO program. The GO categories: A) 25 cellular components (CC) B) 43 biological processes (BP) and C) 24 molecular functions (MF) are shown as pie charts.

ACS Paragon Plus Environment
Figure 3: RT-qPCR expression profile of 20 candidate genes
Seven seed developmental stages (4, 8, 12, 16, 22, 30, 48 DAA) were used in the study. These graphs show the relative transcript abundance of each gene in comparison with the reference gene, *Linum usitatissimum* ETIF5A (GR508912). Expression values are reported as the average of three biological and two technical replicates. Values correspond to the mean and standard error of biological triplicates. 89x53mm (300 x 300 DPI)
Figure 5. Schematic view of methionine metabolic pathway during flax seed development: Values in the parentheses represent the number of isoforms identified for that protein. Enzymes shown in grey color were not identified in the present study. Abbreviations for enzymes and metabolites: MMT: methionine S-methyltransferase; HMT: homocysteine S-methyltransferase; AMP: Adenosine monophosphate. 73x77mm (300 x 300 DPI)